On convolution tails

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limits for Convolution Tails 3

Suppose F is a distribution on the half-line [0, ∞). We study the limits of the ratios of tails F * F (x)/F (x) as x → ∞. We also discuss the classes of distributions S , S (γ), and S * .

متن کامل

Lower Limits and Equivalences for Convolution Tails

Note that the function φ(γ) is monotone continuous in the interval (−∞, γ̂), and φ(γ̂) = limγ↑γ̂ φ(γ) ∈ [1,∞]. We distinguish all the distributions on [0,∞) according to the value of γ̂. If γ̂ = 0, then we say that the distribution F is heavy-tailed ; in that case φ(γ) =∞ for any γ > 0. If γ̂ > 0, then we call the distribution F light-tailed ; this happens if and only if, for some γ > 0, F (x) = o(e−...

متن کامل

Probability LOWER LIMITS AND EQUIVALENCES FOR CONVOLUTION TAILS

Put γ̂ = sup{γ : φ(γ) < ∞} ∈ [0,∞]. Note that the function φ(γ) is monotone continuous in the interval (−∞, γ̂), and φ(γ̂) = lim γ↑γ̂ φ(γ) ∈ [1,∞]. We distinguish all the distributions on [0,∞) according to the value of γ̂. If γ̂ = 0, then we say that the distribution F is heavy-tailed; in that case φ(γ) = ∞ for any γ > 0. If γ̂ > 0, then we call the distribution F light-tailed; this happens if and on...

متن کامل

On non-stationary convolution and inverse convolution

Recursive inverse filtering with non-stationary filters is becoming a useful tool in a range of applications, from multi-dimensional inverse problems to wave extrapolation. I formulate causal non-stationary convolution and combination and their adjoints in such a way that it is apparent that the corresponding non-stationary recursive filters are true inverse processes. Stationary recursive inve...

متن کامل

Telling tails: selective pressures acting on investment in lizard tails.

Caudal autotomy is a common defense mechanism in lizards, where the animal may lose part or all of its tail to escape entrapment. Lizards show an immense variety in the degree of investment in a tail (i.e., length) across species, with tails of some species up to three or four times body length (snout-vent length [SVL]). Additionally, body size and form also vary dramatically, including variati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1982

ISSN: 0304-4149

DOI: 10.1016/0304-4149(82)90013-8